comparison shaders/bandlimit_pixel.f.glsl @ 2495:d437b8e8ba62

Add xBRZ and bandlimit pixel footprint shaders ported by hunterk
author Michael Pavone <pavone@retrodev.com>
date Sun, 28 Apr 2024 23:22:37 -0700
parents
children
comparison
equal deleted inserted replaced
2494:b62580dc6f30 2495:d437b8e8ba62
1 /*
2 * Bandlimited pixel footprint shader.
3 * Author: Themaister
4 * License: MIT
5 * Adapted from: https://github.com/Themaister/Granite/blob/master/assets/shaders/inc/bandlimited_pixel_filter.h
6 * ported to blastem shader format by hunterk
7 */
8
9 // sensible values between 0.0 and 5.0
10 #define SMOOTHNESS 0.5
11
12 uniform sampler2D textures[2];
13 uniform highp vec2 texsize;
14
15 varying highp vec2 texcoord;
16
17 // The cosine filter convolved with rect has a support of 0.5 + d pixels.
18 // We can sample 4x4 regions, so we can deal with 2.0 pixel range in our filter,
19 // and the maximum extent value we can have is 1.5.
20 const highp float maximum_support_extent = 1.5;
21
22 struct BandlimitedPixelInfo
23 {
24 highp vec2 uv0;
25 highp vec2 uv1;
26 highp vec2 uv2;
27 highp vec2 uv3;
28 mediump vec4 weights;
29 mediump float l;
30 };
31
32 // Our Taylor approximation is not exact, normalize so the peak is 1.
33 const highp float taylor_pi_half = 1.00452485553;
34 const highp float taylor_normalization = 1.0 / taylor_pi_half;
35 const highp float PI = 3.14159265359;
36 const highp float PI_half = 0.5 * PI;
37
38 #define gen_taylor(T) \
39 mediump T taylor_sin(mediump T p) \
40 { \
41 mediump T p2 = p * p; \
42 mediump T p3 = p * p2; \
43 mediump T p5 = p2 * p3; \
44 return clamp(taylor_normalization * (p - p3 * (1.0 / 6.0) + p5 * (1.0 / 120.0)), -1.0, 1.0); \
45 }
46 // No templates in GLSL. Stamp out macros.
47 gen_taylor(float)
48 gen_taylor(vec2)
49 gen_taylor(vec3)
50 gen_taylor(vec4)
51
52 // Given weights, compute a bilinear filter which implements the weight.
53 // All weights are known to be non-negative, and separable.
54 mediump vec3 compute_uv_phase_weight(mediump vec2 weights_u, mediump vec2 weights_v)
55 {
56 // The sum of a bilinear sample has combined weight of 1, we will need to adjust the resulting sample
57 // to match our actual weight sum.
58 mediump float w = dot(weights_u.xyxy, weights_v.xxyy);
59 mediump float x = weights_u.y / max(weights_u.x + weights_u.y, 0.001);
60 mediump float y = weights_v.y / max(weights_v.x + weights_v.y, 0.001);
61 return vec3(x, y, w);
62 }
63
64 BandlimitedPixelInfo compute_pixel_weights(vec2 uv, vec2 size, vec2 inv_size)
65 {
66 // Get derivatives in texel space.
67 // Need a non-zero derivative.
68 vec2 extent = max(fwidth(uv) * size * (SMOOTHNESS + 0.5), 1.0 / 256.0);
69
70 // Get base pixel and phase, range [0, 1).
71 vec2 pixel = uv * size - 0.5;
72 vec2 base_pixel = floor(pixel);
73 vec2 phase = pixel - base_pixel;
74
75 BandlimitedPixelInfo info;
76
77 mediump vec2 inv_extent = 1.0 / extent;
78 if (any(greaterThan(extent, vec2(maximum_support_extent))))
79 {
80 // We need to just do regular minimization filtering.
81 info = BandlimitedPixelInfo(vec2(0.0), vec2(0.0), vec2(0.0), vec2(0.0),
82 vec4(0.0, 0.0, 0.0, 0.0), 0.0);
83 }
84 else if (all(lessThanEqual(extent, vec2(0.5))))
85 {
86 // We can resolve the filter by just sampling a single 2x2 block.
87 mediump vec2 shift = 0.5 + 0.5 * taylor_sin(PI_half * clamp(inv_extent * (phase - 0.5), -1.0, 1.0));
88 info = BandlimitedPixelInfo((base_pixel + 0.5 + shift) * inv_size, vec2(0.0), vec2(0.0), vec2(0.0),
89 vec4(1.0, 0.0, 0.0, 0.0), 1.0);
90 }
91 else
92 {
93 // Full 4x4 sampling.
94
95 // Fade between bandlimited and normal sampling.
96 // Fully use bandlimited filter at LOD 0, normal filtering at approx. LOD -0.5.
97 mediump float max_extent = max(extent.x, extent.y);
98 mediump float l = clamp(1.0 - (max_extent - 1.0) / (maximum_support_extent - 1.0), 0.0, 1.0);
99
100 mediump vec4 sine_phases_x = PI_half * clamp(inv_extent.x * (phase.x + vec4(1.5, 0.5, -0.5, -1.5)), -1.0, 1.0);
101 mediump vec4 sines_x = taylor_sin(sine_phases_x);
102
103 mediump vec4 sine_phases_y = PI_half * clamp(inv_extent.y * (phase.y + vec4(1.5, 0.5, -0.5, -1.5)), -1.0, 1.0);
104 mediump vec4 sines_y = taylor_sin(sine_phases_y);
105
106 mediump vec2 sine_phases_end = PI_half * clamp(inv_extent * (phase - 2.5), -1.0, 1.0);
107 mediump vec2 sines_end = taylor_sin(sine_phases_end);
108
109 mediump vec4 weights_x = 0.5 * (sines_x - vec4(sines_x.yzw, sines_end.x));
110 mediump vec4 weights_y = 0.5 * (sines_y - vec4(sines_y.yzw, sines_end.y));
111
112 mediump vec3 w0 = compute_uv_phase_weight(weights_x.xy, weights_y.xy);
113 mediump vec3 w1 = compute_uv_phase_weight(weights_x.zw, weights_y.xy);
114 mediump vec3 w2 = compute_uv_phase_weight(weights_x.xy, weights_y.zw);
115 mediump vec3 w3 = compute_uv_phase_weight(weights_x.zw, weights_y.zw);
116
117 info = BandlimitedPixelInfo((base_pixel - 0.5 + w0.xy) * inv_size,
118 (base_pixel + vec2(1.5, -0.5) + w1.xy) * inv_size,
119 (base_pixel + vec2(-0.5, 1.5) + w2.xy) * inv_size,
120 (base_pixel + 1.5 + w3.xy) * inv_size,
121 vec4(w0.z, w1.z, w2.z, w3.z), l);
122 }
123
124 return info;
125 }
126
127 mediump vec4 sample_bandlimited_pixel(sampler2D samp, vec2 uv, BandlimitedPixelInfo info, float lod)
128 {
129 mediump vec4 color = texture2D(samp, uv);
130 if (info.l > 0.0)
131 {
132 mediump vec4 bandlimited = info.weights.x * pow(texture2D(samp, info.uv0, lod), vec4(2.2));
133 if (info.weights.x < 1.0)
134 {
135 bandlimited += info.weights.y * pow(texture2D(samp, info.uv1, lod), vec4(2.2));
136 bandlimited += info.weights.z * pow(texture2D(samp, info.uv2, lod), vec4(2.2));
137 bandlimited += info.weights.w * pow(texture2D(samp, info.uv3, lod), vec4(2.2));
138 }
139 color = mix(color, bandlimited, info.l);
140 }
141 return color;
142 }
143
144 void main()
145 {
146 BandlimitedPixelInfo info = compute_pixel_weights(texcoord, texsize.xy, 1.0 / texsize.xy);
147 mediump vec3 result = sample_bandlimited_pixel(textures[0], texcoord, info, 0.0).rgb;
148 gl_FragColor = vec4(sqrt(clamp(result, 0.0, 1.0)), 1.0);
149 }